Alkylate Measurements at Field Sites

M. Lee Davisson, Alfredo Marchetti, Marina Chiarappa-Zucca, and David Layton

Lawrence Livermore National Laboratory

Sponsor, DOE Office of Fuels Development

Workshop on the Increased Use of Ethanol and Alkylates in Automotive Fuels in California

April 10-11, 2001

Oakland, CA

Presentation outline

- Alkylate compounds in current gasoline and their relationship to TPH-g and risk.
- Fate and transport issues in gasoline spills
- Analytical measurements, field sites, and experimental approach.
- Preliminary data

Estimated composition of California reformulated gasolines (from UCRL-AR-135949)

Fuel Component	MTBE-Blended	EtOH-Blended Volume %	No Oxygen
<i>n</i> -Butane	0.6	0.5	0.1
C ₅ and C ₆ alkanes	6.1	4.3	11.3
C ₇ to C ₉ branched alkanes	14.4	28.4	32.5
Benzene	0.67	0.80	0.80
Total aromatics	24.0	20.0	20
Total olefins	4.3	2.9	5.0
Oxygenate	11.4	7.8	0
Other	39	35	30
Total	100.47	99.7	100
Oxygen (wt%)	2.1	2.7	

Alkylates already occur in gasoline

Production Profile

Percentages are in agreement with those presented by Durett *et al.* for a finished alkylate (*Anal. Chem.* **35** pp 637, 1963)

Weight percent of total n-alkanes, isoalkanes, and cycloalkanes in 1996 Bay Area gasoline (Kirchstetter et al., 1999).

Physicochemical properties for MTBE, ethanol, and isooctane

	Units	Fuel Compound		
Property		MTBE	Ethanol	Isooctane
Molecular weight	g/mol	88.15	46.7	114.23
Weight % Oxygen		18.2	34.8	0
Octane rating		110	115	100
Density as liquid	g/mL	0.740	0.789	0.69
K _{ow}	dimensionless	8.71	0.50	12,200
Vapor pressure [†]	Pa	32,664	7,869	6,490
Solubility	mg/L	48,000	Miscible	2.4
Henry's law [†]	Pa-m³/mol	53.5	0.64	323,000

Where's the data?

- Previous field studies on gasoline spills focused on fate and transport of BTEX and oxygenates.
- Regulatory mandate mostly requires quantification of carcinogens and TPH-g.
- TPH-g is not compound specific and often semiquantitative.
- Biodegradation studies are limited for branched alkanes.

TPHCWG recommendations

- Carcinogenic risk based on indicator compounds of benzene and PAHs.
- Non-carcinogenic risk based on fraction-specific toxicity criteria. Fractions determined by carbon number. e.g. RfDs: Benzene < C6-C9 < C10-C12
- Risk assessment based on exposure pathways and toxicity criteria.
- Update approach as data become available on fate, transport, and toxicity of TPH constituents.

Measurement approach

Data Collection

- Field Parameters
- BTEX and MTBE
- •TPH-g
- •Hydrocarbons
- •Total non-volatile
- Carbon isotopes

<u>Uncertainties</u>

- Exact age and character of spill is typically not known.
- Sample reproducibility may be an issue for alkylates.
- •Site-to-site variability may be large due to differences in environment, well construction, sampling method, etc.

Target compounds are alkanes greater than 1% by weight in commercial gasoline:

n-alkanes	<u>isoalkanes</u>	<u>cycloalkanes</u>
n-pentane	2-methylbutane	methylcyclopentane
n-hexane	2-methylpentane	cyclohexane
n-heptane	3-methylpentane	methylcyclohexane
n-octane	2,2,4-trimethylpentane	
	2,3,3-trimethylpentane	
	2,3,4-trimethylpentane	
	2,2,5-trimethylhexane	

Initial measurements were preformed by GC/FID using modified EPA 8015 and 8021 methods. Developing GC/MS method.

Isotope mass balance of biodegradation

Two UST sampling sites were selected

Leaking Underground Storage Tanks

Public Wells

SacramentoETIC cooperation

San Jose SCVWD cooperation

BTEX is 10X Greater than Branched Alkanes

TPH-g constituents roughly scale to parent gasoline

Summary statements

- Minor increases in alkylates probably will occur in subsurface spill sites.
- Persistence of isooctane and other branched alkanes in groundwater is poorly understood relative to BTEX.
- Even less understood for a gasohol spill
- Toxicological risk of these alkanes is 10X less than benzene.
- Any persistence of alkylates in groundwater would probably be more of a taste and odor issue.